In the present study, methanolic extracts of three Veronica species, namely Veronica montana, Veronica beccabunga and Veronica polita, were analyzed for the total iridoids, total phenylethanoids and total phenolics contents. The results showed that iridoid glycosides are the major class of tested secondary metabolites in selected Veronica species. The highest iridoid content (467.33 mg/g d.w.) was recorded in extract of V. polita, while the richest source of total phenolics and total phenylethanoids was the extract of V. montana (105.24 mg GAE/g d.w. and 16.03 mg acteoside/g d.w., respectively). Additionally, aucubin determination in tested extracts was performed by high-performance liquid chromatography (HPLC) and high-performance thin layer chromatography (HPTLC). The aucubin content in investigated samples determined by HPLC varied between 5.66 in extract of V. beccabunga and 69.96 mg/g d.w. in extract of V. polita. No significant differences were observed between the aucubin content in plant extracts obtained by HPLC and HPTLC techniques. The proposed HPTLC method is simple, rapid and more economical as compared to HPLC method, and thus it may be suitable for routine identification and quantification of aucubin in Veronica species.
Albach, D. C., Grayer, R. J., Kite, G. C., & Jensen, S. R. (2005). Veronica: Acylated flavone glycosides as chemosystematics markers. Biochemical Systematic and Ecology, 33, 1167–1177.
Crişan, G., Vlase, L., Balica, G., Muntean, D., Ştefănescu, C., Păltinean, R., Tămas, M., & Leucuta, S. (2010). LC/MS analysis of aucubin and catalpol of some Veronica species. Farmacia, 58(2), 237–242.
Dinda, B., Debnath, S., & Harigaya, Y. (2007). Naturally occuring iridoids. Chemical and Pharmaceutical Bulletin, 1(2), 159–222.
European Pharmacopoeia . (2008). Council of Europe. Strasbourg Cedex, 6(0), 1307–1308.
Grayer-Barkmeijer, R. (1973). A chemosystematic study of Veronica: Iridoid glucosides. Biochemical Systematic and Ecology, 1, 101–110.
Group, A. P. (2003). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society, 141, 399–436.
Gunther, M., & Schmidt, P. C. (2005). Comparison between HPLC and HPTLCdensitometry for the determination of harpagoside from Harpagophytum procumbens CO2-extracts. Journal of Pharmaceutical and Biomedical Analysis, 37, 817–821.
Haznagy-Radnai, E., Rethy, B., Czigle, S., Zupko, I., Weber, E., Martinek, T., Falkay, G., & Mathe, I. (2008). Cytotoxicactivities of Stachys species. Fitoterapia, 79, 595-597 60.
Janković, T., Menković, N., Zdunić, G., Beara, I., Balog, K., Šavikin, K., & Mimica-Dukić, N. (2010). Quantitative determination of aucubin in seven Plantago species using HPLC, HPTLC and LC-ESI-MS methods. Analytical Letters, 43, 2487–2495.
Jensen, S. R., Albach, D. C., Ohno, T., & Grayer, R. J. (2005). Veronica: Iridoids and cornoside as chemosystematic markers. Biochemical Systematic and Ecology, 33, 1031–1047.
Jeong, H. J., Koo, H. N., Na, H. J., Kim, M. S., Hong, S. H., Eom, J. W., Kim, K. S., Shin, T. Y., & Kim, H. M. (2002). Inhibition of TNF-α and IL-6 production by aucubin through blockade of NF-κB activation in RBL-2H3 mast cells. Cytokine, 18, 252–259.
Marin, P. D. (2003). Biohemijska i molekularna sistematika biljaka.
Recio, M. C., Giner, R. M., Manez, S., & Rios, J. L. (1993). Structural considerations on the iridoids as anti-inflammatory agents. Planta Medica, 60, 232–234.
Saracoglu, I., Varel, M., Harput, S., & Nagatsu, A. (2004). Acylated flavonoids and phenol glycosides from Veronica thymoides subsp. Pseudocinera, Phytochemistry, 65, 2379–2385.
Srivastava, M. M. (2011). In High-Performance Thin-Layer Chromatography (HPTLC.
Suomi, J., Wiedmer, S. K., Jussila, M., & Riekkola, M.-L. (2001). Determination of iridoid glycosides by micellar electrokinetic capillary chromatography-mass spectrometry with use of the partial filling technique. Electrophoresis, 22, (12, 2580–2587.
Taskova, R. M., Gotfredsen, C. H., & Jensen, S. R. (2006). Chemotaxonomy of Veroniceae and its allies in the Plantaginaceae. Phytochemistry, 67, 286–301.
Taskova, R. M., Kokubuna, T., Grayer, R. J., Ryan, K. G., & Garnock-Jones, P. J. (2008). Flavonoid profiles in the Heliohebe group of New Zealand Veronica (Plantaginaceae. Biochemical Systematics and Ecology, 36, 110–116.
Trimm, A. R., & Hill, R. (1952). The preparation and properties of aucubin, asperuloside and some related glycosides. Biochemical Journal, 50, 310–319.
Urbina, A. V. O., Martin, M. L., Fernandez, B., Roman, L. S., & Cubillo, L. (1994). In vitro antispasmodic activity of peracetylated penstemonoside, aucubin, and catalpol. Planta Medica, 60, 512–515.
Velioglu, Y. S., Mazza, G., Gao, L., & Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. Journal of Agriculture and Food Chemistry, 46, 4113–4117.
Waksmundzka-Hajnos, M., & Sherma, J. (2011). In High Performance Liquid Chromatography in Phytochemical Analysis.
Citation
Copyright
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.