Rosa canina L. extracts were prepared using water or three natural deep eutectic solvents (NADESs: betaine+malic acid, betaine+sucrose, and citric acid+sucrose with 50% of water) and maceration. The extracts were characterized in terms of total polyphenol content (TPC), ABTS radical scavenging potential, extraction yield, zeta potential, conductivity, pH, density, surface tension, and viscosity. TPC was the highest in betaine+malic acid extract (10.4 mg gallic acid equivalents, GAE/g), and the lowest in water and citric acid+sucrose extracts (6.5 and 6.4 mg GAE/g, respectively). ABTS radical scavenging potential was the highest in water extract, 5.6 mmol Trolox/g, whereas the lowest was in citric acid+sucrose extract, 2.6 mmol Trolox/g. Extraction yield was the lowest for betaine+malic acid extract, 0.607 %, and statistically significantly higher for betaine+sucrose extract, 1.22 %. Zeta potential (absolute value) was the highest for betaine+sucrose extract (-2.12 mV), and the lowest for citric acid+sucrose extract (0.29 mV). Conductivity was in the range of 0.25 mS/cm (betaine+sucrose extract) to 5.46 mS/cm (betaine+malic acid extract). pH ranged from 3.0 in betaine+malic acid extract to 4.5 in water and betaine+sucrose extracts. Density varied from 1.00 g/mL for water extract to 1.19 g/mL for betaine+sucrose extract, while surface tension varied from 35.0 mN/m for betaine+sucrose extract to 40.6 mN/m for water extract. Viscosity of water extract was 1.52 mPa·s and it was significantly higher for citric acid+sucrose extract, 10.67 mPa·s. The application of NADESs as an extraction medium can improve polyphenol recovery from rose hips, as well as extraction yield and conductivity, but depending on NADES composition. Namely, the highest TPC and conductivity were measured in betaine+malic acid extract, while betaine+sucrose extract possesses the highest extraction yield. Thus, the constitution of NADES should be optimized depending on the future application of the extract.
Abbott, A. P., Boothby, D., Capper, G., Davies, D. L., & Rasheed, R. K. (2004). Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. Journal of the American Chemical Society, 126(29), 9142–9147.
Bi, L., Tian, X., Dou, F., Hong, L., Tang, H., & Wang, S. (2012). New antioxidant and antiglycation active triterpenoid saponins from the root bark of Aralia taibaiensis. Fitoterapia, 83(1), 234–240.
Chemat, F., Abert-Vian, M., Fabiano-Tixier, A. S., Strube, J., Uhlenbrock, L., Gunjevic, V., & Cravotto, G. (2019). Green extraction of natural products: Origins, current status, and future challenges. TrAC Trends in Analytical Chemistry, 118, 248–263.
Dai, Y., Spronsen, J., Witkamp, G., Verpoorte, R., & Choi, Y. H. (2013). Natural deep eutectic solvents as new potential media for green technology. Analytica Chimica Acta, 766, 61–68.
Florindo, C., Oliveira, F. S., Rebelo, L. P. N., Fernandes, A. M., & Marrucho, I. M. (2014). Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustainable Chemistry & Engineering, 2(10), 2416–2425.
Foti, M. C., & Amorati, R. (2010). Non-phenolic radical-trapping antioxidants. Journal of Pharmacy and Pharmacology, 61(11), 1435–1448.
Galvan, d’Alessandro L., Kriaa, K., Nikov, I., & Dimitrov, K. (2012). Ultrasound assisted extraction of polyphenols from black chokeberry. Separation and Purification Technology, 93, 42–47.
Gullón, B., Muñiz-Mouro, A., Lú-Chau, T. A., Moreira, M. T., Lema, J. M., & Eibes, G. (2019). Green approaches for the extraction of antioxidants from eucalyptus leaves. Industrial Crops and Products, 138, 111473–111473.
Hassan, B. H., & Hobani, A. I. (1998). Flow properties of roselle (Hibiscus sabdariffa L.) extract. Journal of Food Engineering, 35(4), 459–470.
Hikmawanti, N. P. E., Ramadon, D., Jantan, I., & Mun’im, A. (2021). Natural deep eutectic solvents (NADES): Phytochemical extraction performance enhancer for pharmaceutical and nutraceutical product development. Plants, 10(10), 2091–2091.
Jovanović, A. A., Djordjević, V. B., Petrović, P. M., Pljevljakušić, D. S., Zduni’czduni, Š., K.P., B., & B.M. (2021). The influence of different extraction conditions on polyphenol content, antioxidant and antimicrobial activities of wild thyme. Journal of Applied Research on Medicinal and Aromatic Plants, 25, 100328–100328.
Jovanović, A. A., Đorđević, V. B., Zdunić, G. M., Pljevljakušić, D. S., Šavikin, K. P., Gođevac, D. M., & Bugarski, B. M. (2017). Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Separation and Purification Technology, 179, 369–380.
Jovanović, A. A., Lević, S. M., Pavlović, V. B., Marković, S. B., Pjanović, R. V., Ðorđević, V. B., Nedović, V., & Bugarski, B. M. (2021). Freeze vs. spray drying for dry wild thyme (Thymus serpyllum L.) extract formulations: The impact of gelatin as a coating material. Molecules, 26(13), 3933–3933.
Jovanović, A., Petrović, P., Đorđević, V., Zdunić, G., Šavikin, K., & Bugarski, B. (2017). Polyphenols extraction from plant sources. Lekovite Sirovine, 37, 45–49.
Jurinjak, T. A., Benković, M., Valinger, D., Jurina, T., Belščak-Cvitanović, A., & Gajdoš, K. J. (2018). Optimizing bioactive compounds extraction from different medicinal plants and prediction through nonlinear and linear models. Industrial Crops and Products, 126, 449–458.
Kazaz, S., Baydar, H., & Erbas, S. (2009). Variations in chemical compositions of Rosa damascena Mill. and Rosa canina L. fruits. Czech Journal of Food Sciences, 27(3), 178–184.
Khan, I. A., & Abourashed, E. A. (2010). Leung’s encyclopedia of common natural ingredients used in food, drugs, and cosmetics.
Larsen, E., Kharazmi, A., Christensen, L. P., & Christensen, B. S. (2003). An antiinflammatory galactolipid from rose hip (Rosa canina) that inhibits chemotaxis of human peripheral blood neutrophils in vitro. Journal of Natural Products, 66(7), 994–995.
Mehariya, S., Fratini, F., Lavecchia, R., & Zuorro, A. (2021). Green extraction of value-added compounds form microalgae: A short review on natural deep eutectic solvents (NaDES) and related pre-treatments. Journal of Environmental Chemical Engineering, 9(5), 105989–105989.
Mladenović, J., Đurić, M., Šekularac, G., Brković, D., Stepanović, J., Mašković, P., & Bošković-Rakočević, L. (2018). Determination of the content of bioactive components in different extracts of Portulaca oleracea L. Acta Agriculturae Serbica, 23(46), 223–231.
Mohd, F. F., & Mohd, N. M. (2022). The formulation and physicochemical properties of betaine-based natural deep eutectic solvent. Journal of Molecular Liquids, 360, 119392–119392.
Peng, X., Duan, M., Yao, X., Zhang, Y., Zhao, C., Zu, Y., & Fu, Y. (2016). Green extraction of five target phenolic acids from Lonicerae japonicae Flos with deep eutectic solvent. Separation and Purification Technology, 157, 249–257.
Promila, S., & S. (2018). Applications of green solvents in extraction of phytochemicals from medicinal plants: A review. Pharma Innovation Journal, 7(3), 238–245.
Ruesgas-Ramón, M., Figueroa-Espinoza, M. C., & Durand, E. (2017). Application of deep eutectic solvents (des) for phenolic compounds extraction: Overview, challenges, and opportunities. Journal of Agricultural and Food Chemistry, 65(18), 3591–3601.
Rusak, G., Komes, D., Likić, S., Horžić, D., & Kovač, M. (2008). Phenolic content and antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used. Food Chemistry, 110(4), 852–858.
Savi, L. K., Dias, M. C. G. C., Carpine, D., Waszczynskyj, N., Ribani, R. H., & Haminiuk, C. W. I. (2019). Natural deep eutectic solvents (NADES) based on citric acid and sucrose as a potential green technology: A comprehensive study of water inclusion and its effect on thermal, physical and rheological properties. International Journal of Food Science & Technology, 54(3), 898–907.
Skaf, D. W., Punzi, V. L., Rolle, J. T., & Cullen, E. (2021). Impact of Moringa oleifera extraction conditions on zeta potential and coagulation effectiveness. Journal of Environmental Chemical Engineering, 9(1), 104687–104687.
Citation
Funding Statement
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Inovacioni centar Tehnološko-metalurškog fakulteta u Beogradu doo) (MPNTR - 451-03-68/2020-14/200287)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Beogradu, Tehnološko-metalurški fakultet) (MPNTR - 451-03-68/2020-14/200135)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Institut za proučavanje lekovitog bilja 'Dr Josif Pančić', Beograd) (MPNTR - 451-03-68/2020-14/200003)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Beogradu, Institut za primenu nuklearne energije - INEP) (MPNTR - 451-03-68/2020-14/200019)
Copyright
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.