Twenty one essential oils (EOs) documented their significant antimicrobial effect with regard to our pre–set criterion of the Minimal Inhibitory Concentration (MIC ≤ 200 μL / mL) of EOs towards Enterococcus faecalis (ATCC 29212 and or clinical isolates); the best effect MIC 0.4 μL / mL (approx. 0.26 μg / mL) achieved Satureja horvatii L. EO, while the EOs with the lowest antimicrobial efficacy were Rosmarinus officinalis L. and Achilea milefolium L., both with MIC s160.0 μg / mL. Analysis of the MIC values within the groups revealed that ATCC strain of E. faecalis is generally lower, ranging from 0.26 to 156 μg / mL, in comparison to those for clinical isolateswhich ranged from 10 to 160 μg / mL. Twelve 12 components that are common in EOs whith MIC s ≤ 200 μg / mL in testings towards both, the clinical and referent strains are given in descending order according to number of oils they are present in: trans–β–caryophyllene (13) > myrcene (8)> α–pinene (8) > linalool (7) > p–cymene (7) > borneol (7) > geraniol (6) > camphene (6) > limonene (5) > 1,8– cineol (5) > γ –terpinene (5) > α–terpinene (4). Comparison of EO constituents reviled that only, geraniol and 1,8–cineol, contributed with ≥ 10 % to more than one EO (MIC 0.3–200 μg / mL) efficient against both E. faecalis strains. Thirteen components in 11 EOs with MIC ≤ 200 µg / mL towards ATCC 29212 were representative based on their contents in EOs: eugenol 82.9 % > thymol 63.7 % > hexadecanoic acid 47.8 % > menthol 46.6 % > cis–b–ocimene 44.2 % > geranial 42.1 % > trans–β–caryophyllene 40.8 % > citronellal 36.7 % > α–pinene 31.2 % > neral 30.5 % > α–eudesmol 22.4 % > citronellol 13.1 % > menthone 11.3 %. Following seven components, representative in 10 EOs with MIC ≤ 200 µg / mL towards clinical isolates, are presented in order of their contribution to EOs: phenylethyl alcohol 57.7 % > geranial 32.9 % > neral 22.2 % > p– cymene 20 % > carvacrol 14 % > α–pinene 11.5 % > linalool 11.4 %. Out of 21 highly efficient EOs selected in this study, six EOs proved to be the most efficient (MIC ≤ 30 μg / mL ); three oils in control of E.faecalis ATCC strain (Satureja horvatii, Mentha pulegium and Rosmarinus officinalis) and other three in control of E. faecalis clinical isolates (Leptospermum petersonii, Thymus algeriensis, Thymus serpyllum). Thymol is a major component in three out of the six aforementioned most efficient EOs. The aimof our study was to investigate differences in efficacy of selected EOs that proved to possess great antimicrobial activity, towards the referent strain ATCC 29212 and clinical isolates of E. faecalis on, and to estimate which of their constituents might contribute to desired activity, as “markers compunds”.
References
Abbaszadegan, A., Sahebi, S., Gholami, A., Delroba, A., Kiani, A., & Iraji, A. (2016). Time dependent antibacterial effects of Aloe vera and Zataria multiflora plant essential oils compared to calcium hydroxide in teeth infected with Enterococcus faecalis. Journal of Investigative and Clinical Dentistry, 7(1), 93–101.
Ahmad, A., & Viljoen, A. (2015). The in vitro antimicrobial activity of Cymbopogon essential oil (lemon grass) and its interaction with silver ions. Phytomedicine, 22(6), 657–665.
Ait–Ouazzou, A., Cherrat, L., Espina, L., Loran, S., Rota, C., & Pagan, R. (2011). The antimicrobial activity of hydrophobic essential oil constituents acting alone or in combined processes of food preservation. Innovative Food Science & Emerging Technologies, 12(3), 320–329.
AlShwaimi, E., Bogari, D., Ajaj, R., Al–Shahrani, S., Almas, K., & Majeed, A. (2016). In Vitro Antimicrobial Effectiveness of Root Canal Sealers against Enterococcus faecalis: A Systematic Review. Journal of Endodontics, 42(11), 1588–1597.
Amor, I. L. B., Neffati, A., Ben Sgaier, M., Bhouri, W., Boubaker, J., & Skandrani, I. (2008). Antimicrobial activity of essential oils isolated from Phlomis crinita cav. Ssp Mauritanica Munby. Journal of the American Oil Chemists Society,Vol, 85(9), 845–849.
Bassole, I. H. N., & Juliani, H. R. (2012). Essential Oils in Combination and Their Antimicrobial Properties. Molecules, 17(4), 3989–4006.
Bhattia, H. N., Khan, S. S., Khan, A., Rani, M., Ahmad, V. U., & Choudhary, M. I. (2014). Biotransformation of monoterpenoids and their antimicrobial activities. Phytomedicine, 21(12), 1597–1626.
Braak, S. A. A. J., & Leijten, G. C. J. J. (1994). Essential oils and oleoresins: a survey in the Netherlands and other major markets in the European Union.
Cardoso, N. N. R., Alviano, C. S., Blank, A. F., Romanos, M. T. V., Fonseca, B. B., & Rozental., S. (2016). Synergism Effect of the Essential Oil from Ocimum basilicum var. Maria Bonita and Its Major Components with Fluconazole and Its Influence on Ergosterol Biosynthesis. Evidence–Based Complementary and Alternative Medicine.Vol.
Chen, W., & Viljoen, A. M. (2010). Geraniol – A review of a commercially important fragrance material. South African Journal of Botany, 76(4), 643–651.
Contreras–Moreno, B. Z., Velasco, J. J., Rojas, J. D., Mendez, L. D., & Celis, M. T. (2016). Antimicrobial activity of essential oil of Pimenta racemosa var. racemosa (Myrtaceae) leaves. Journal of Pharmacy & Pharmacognosy Research, 4(6), 224–230.
Cristea, A. D., Popa, M., Chirifiuc, M. C., Marutescu, L., Lazar, V., & Suciu, I. (2015). The antimicrobial efficiency of endodontic irrigation solutions on bacterial biofilm. A literature review. Biointerface Research in Applied Chemistry, 5(4), 963–969.
Dorman, H. J. D., & Deans, S. G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308–316.
Faleiro, M. L., Miguel, M. G., Ladeiro, F., Venancio, F., Tavares, R., & Brito, J. C. (2003). Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus. Letters in Applied Microbiology, 36(1), 35–40.
Gallucci, M. N., Oliva, M., Casero, C., Dambolena, J., Luna, A., & Zygadlo, J. (2009). Antimicrobial combined action of terpenes against the food–borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour and Fragrance Journal, 24(6), 348–354.
Ghribi, L., Ben Nejma, A., Besbes, M., Harzalla–Skhiri, F., Flamini, G., & Ben Jannet, H. (2016). Chemical Composition, Cytotoxic and Antibacterial Activities of the Essential Oil from the Tunisian Ononis angustissima L. Fabaceae). Journal of Oleo Science, 65(4), 339–345.
Gomes, B., Pinheiro, E. T., Jacinto, R. C., Zaia, A. A., Ferraz, C. C. R., & Souza–Filbo, F. J. (2008). Microbial analysis of canals of root–filled teeth with periapical lesions using polymerase chain reaction. Journal of Endodontics, 34(5), 537–540.
Ipek, E., Zeytinoglu, H., Okay, S., Tuylu, B. A., Kurkcuoglu, M., & Baser, K. H. C. (2005). Genotoxicity and antigenotoxicity of Origanum oil and carvacrol evaluated by Ames Salmonella / Microsomal test. Food Chemistry, 93(3), 551–556.
Jaradat, N., Adwan, L., K’Aibni, S., Shraim, N., & Zaid, A. N. (2016). Chemical composition, anthelmintic, antibacterial and antioxidant effects of Thymus bovei essential oil. BMC Complementary and Alternative Medicine, 16, 418.
Jirovetz, L., Buchbauer, G., Schmidt, E., Stoyanova, A. S., Denkova, Z., & Nikolova, R. (2007). Purity, antimicrobial activities and olfactoric evaluations of geraniol /nerol and various of their derivatives. Journal of Essential Oil Research, 19(3), 288–291.
Koutsaviti, A., Georgiou, C., Milenkovic, M., & Tzakou, O. (2015). Composition and Antimicrobial Activity of the Essential Oils from Different Parts of Cachrys cristata DC. from Greece. Records of Natural Products, 9(3), 436–440.
Lakusic, B., Ristic, M., Slavkovska, V., Stankovic, J. A., & Milenkovic, M. (2008). Chemical composition and antimicrobial activity of the essential oil from Satureja horvatii Silic (Lamiaceae. Journal of the Serbian Chemical Society, 73(7), 703–711.
Li, L., Li, Z. W., Yin, Z. Q., Wei, Q., Jia, R. Y., & Zhou, L. J. (2014). Antibacterial activity of leaf essential oil and its constituents from 22 Cinnamomum longepaniculatum. International Journal of Clinical and Experimental Medicine, 7(7), 1721–1727.
Lysakowska, M. E., Sienkiewicz, M., Banaszek, K., & Sokolowski, J. (2015). The Sensitivity of Endodontic Enterococcus spp. Strains to Geranium Essential Oil. Molecules, 20(12), 22881–22889.
M., N., A., Ć., J., G., T., M., D., M., & M, S. (2014). Essential oil of Pelargonium graveolens L’Her shows antibacterial and antiquorum sensing activity in the nosocomial human pathogen Pseudomonas aeruginosa“. VIII Conference on Medicinal and Aromatic Plants of Southeast European Countries.
M., N., J., G., A., C., D., M., & T, M. (2014). Antimicrobial and antiquroum sensing activity of Leptospermum petersonii Bailey essential oil against oral microorganisms”. In 19th Congress of the Balkan Stomatological Society (p. 211).
M., N., J., G., C.F.R.I., F., C.R., C., A., F., T., M., D., M., A., G., & M, S. (2014). Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. & Reut and Thymus Vulgaris L. Essential Oils”, Industrial Crops and Products, 53, 183–190.
M., N., T., M., D., M., J., G., A., Ć., M., S., & M, S. (2016). Antimicrobial activity of three Lamiaceae essential oils against common oral pathogens. Balkan Journal of Dental Medicine, 20(3), 160-167 21.
M., N., T., M., M., M., B., P., A., S., T., P., D., M., T., S., & M, S. (2013). Chemical composition and biological activity of Gaultheria procumbens L. essential oil“. , Industrial Crops and Products, 49, 561–567.
M., P., E., A., R., C. M., M., S., & A, B. (2015). Bioactivity of essential oils: a review on their interaction with food components. Front. Microbiol, 6(76), 10 3389.
Maguna, F. P., Romero, A. M., Garro, O. A., & Okulik, N. B. (2006). Actividad Antimicrobiana de un grupo de Terpenoides. In Facultad de Agroindustrias, UNNE, Argentina. Comunicaciones Científicas y Tecnológicas en Internet. Resumen E–057 (pp. 1–4).
Marković, T. (2011). Etarska ulja i njihova bezbedna primena. Institut za proučavanje lekovitog bilja „dr Josif Pančić“. 1–287.
Marzouk, B., Fredj, M. B. H., Chraief, I., Mastouri, M., Boukef, K., & Marzouk, Z. (2008). Chemical composition and antimicrobial activity of essential oils from Tunisian Mentha pulegium L. Journal of Food Agriculture & Environment, 6(1), 78–82.
Mulyaningsih, S., Sporer, F., Zimmermann, S., Reichling, J., & Wink, M. (2010). Synergistic properties of the terpenoids aromadendrene and 1,8–cineole from the essential oil of Eucalyptus globulus against antibiotic–susceptible and antibiotic–resistant pathogens. Phytomedicine, 17(13), 1061–1066.
Newman, D. J., & Cragg, G. M. (2012). Natural Products As Sources of New Drugs over the 30 Years from 1981 to 2010. Journal of Natural Products, 75(3), 311–335.
Nikolić, M. (2015). Doktorska teza pod nazivom “Biološka aktivnost etarskih ulja odabranih aromatičnih biljaka na vrste rodova Staphylococcus, Streptococcus, Lactobacillus, Pseudomonas, Enterococcus i Candida izolovane iz usne duplje čoveka ̓́. Biološki Fakultet, Univerzitet u Beogradu.
Nikolić, M., Smiljković, M., Marković, T., Ćirić, A., Glamočlija, J., Marković, D., & Soković, M. (2016). Sensitivity of clinical isolates of Candida to essential oils from Burseraceae family. EXCLI Journal, 15, 280–289.
Ojeda–Sana, A. M., Baren, C. M., Elechosa, M. A., Juarez, M. A., & Moreno, S. (2013). New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control, 31(1), 189–195.
Pichersky, E., Noel, J. P., & Dudareva, N. (2006). Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science, 311(5762), 808–811.
Rocas, I. N., & Siqueira, J. F. (2012). Characterization of Microbiota of Root Canal–Treated Teeth with Posttreatment Disease. Journal of Clinical Microbiology, 50(5), 1721–1724.
Rouis–Soussi, L. S., El Ayeb–Zakhama, A., Mahjoub, A., Flamini, G., Ben Jannet, H., & Harzallah Skhiri, F. (2014). Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L. Excli Journal, 13, 526–535.
Savelev, S., Okello, E., Perry, N. S. L., Wilkins, R. M., & Perry, E. K. (2003). Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacology Biochemistry and Behavior, 75(3), 661–668.
Sebei, K., Sakouhi, F., Herchi, W., Khouja, M. L., & Boukhchina, S. (2015). Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biological Research, 48(1), 7.
Siqueira, J. F., & Lopes, H. P. (1999). Mechanisms of antimicrobial activity of calcium hydroxide: a critical review. International Endodontic Journal, 32(5), 361-369 20.
Stuart, C. H., Schwartz, S. A., Beeson, T. J., & Owatz, C. B. (2006). Enterococcus faecalis: Its Role in Root Canal Treatment Failure and Current Concepts in Retreatment. Journal of Endodontics, 32(2), 93–98.
Subbiya, A., Padmavathy, K., & Mahalakshmi, K. (2013). Evaluation of the antibacterial activity of three gutta–percha solvents against Enterococcus faecalis. International Journal of Artificial Organs, 36(5), 358–362.
T., M., M., N., J., G., A., Ć., M., E., D., R., V., J., & M, S. (2016). Essential oils for the prevention and treatment of human opportunistic fungal diseases. Medicinal and Aromatic Crops: Production, Phytochemistry, and Utilization, Chapter 15: Pg 247-277. ACS Symposium Series, 1218.
Vengerfeldt, V., Spilka, K., Saag, M., Preem, J. K., Oopkaup, K., Truu, J., & Mandar, R. (2014). Highly Diverse microbiota in Dental Root Canals in Cases of Apical Periodontitis (Data of Illumina Sequencing. Journal of Endodontics, 40(11), 1778–1783.
Citation
Copyright
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.