×
Home Current Archive Editorial board
News Contact
Research Article

Melissa officinalis extracts obtained using maceration, ultrasoundand microwave-assisted extractions: Chemical composition, antioxidant capacity, and physical characteristics

By
Aleksandra Jovanović ,
Aleksandra Jovanović
Contact Aleksandra Jovanović

Institute for the Application of Nuclear Energy INEP, University of Belgrade, Belgrade, Serbia

Milica Mosurović ,
Milica Mosurović

Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia

Branko Bugarski Orcid logo ,
Branko Bugarski

Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia

Petar Batinić ,
Petar Batinić

Institute for Medicinal Plants Research “Dr. Josif Pančić”, Belgrade, Serbia

Natalija Čutović ,
Natalija Čutović

Institute for Medicinal Plants Research “Dr. Josif Pančić”, Belgrade, Serbia

Stefan Gordanić ,
Stefan Gordanić

Institute for Medicinal Plants Research “Dr. Josif Pančić”, Belgrade, Serbia

Tatjana Marković Orcid logo
Tatjana Marković

Institute for Medicinal Plants Research “Dr. Josif Pančić”, Belgrade, Serbia

Abstract

Even though Melissa officinalis L. (lemon balm, fam. Lamiaceae) is a well-known medicinal, aromatic, and spicy plant, and its physicochemical profile and biological activity have been investigated, there is no detailed research regarding the influence of solvent nature (polarity) on the extraction of active compounds (total polyphenols and total flavonoids) and antioxidant activities of the obtained extracts. Therefore, this study aimed to evaluate the polyphenol and flavonoid contents, as well as the antioxidant potential of lemon balm extracts obtained by varying the polarity of the extraction solvents (methyl alcohol, acetone, ethyl acetate, and deionized water) and using three extraction techniques (maceration-MAC, ultrasound-UAE, and microwave-assisted extraction-MAE). Two in vitro tests (ABTS and FRAP assays) were used to determine the antioxidant activity of the extracts. Total tannin and total protein contents, extraction yield, and physical properties of the selected extracts were measured as well. The highest content of polyphenols was found for the methanolic and water extracts obtained by all three extraction techniques, while the highest flavonoid yield was detected only in the mentioned methanolic extracts. The microwave reactor provided methanolic, ethyl acetate, and water extracts with the highest ABTS radical scavenging activity, while in the case of UAE, it was methanolic and water extracts, and in the case of MAC only water extracts. On the other hand, among lemon balm extracts from MAC, water extract possessed the highest ferric reducing power, whereas in UAE and MAE, it was ethyl acetate extract. Total tannin content determined in selected water extracts was 2.55, 4.53, and 1.83 mg tannic acid equivalent (TAE)/mL, while total proteins amounted to 1.34, 1.50, and 1.31 mg/mL using MAC, UAE, and MAE, respectively. The content of total extractive substances in the form of the extraction yield was also determined for selected water extracts and amounted to 12.6 % for MAC, 17.2 % for UAE, and 36.8 % for MAE. Further, this research has included the investigation of some physical properties of lemon balm water extracts, such as conductivity (3.68-4.14 mS/cm), pH (5.99-6.43), density (0.854-0.901 g/mL), surface tension (26.0-31.7 mN/m), and viscosity (1.18-1.21 mPa·s). This research represents the base for the future encapsulation of lemon balm extracts, enriched in polyphenol content, in a novel type of biofunctional carrier that potentially can be applied in the pharmacy, chemical industry, and biotechnics.

References

Bagdat, R. (2006). The essential oil of lemon balm (Melissa officinalis L.), its components and using fields. Journal of Faculty of Agriculture OMU, 21(1), 116–121.
Boeing, J. S., Barizão, É. O., Silva, B. C. E., Montanher, P. F., Cinque, A. V., & Visentainer, J. V. (2014). Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: Application of principal component analysis. Chemistry Central Journal, 8(1), 48–48.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.
Caleja, C., Barros, L., & Prieto, M. A. (2017). Extraction of rosmarinic acid from Melissa officinalis L. by heat-, microwaveand ultrasound-assisted extraction techniques: A comparative study through response surface analysis. Separation and Purification Technology, 186, 297–308.
D’Archivio, M., Filesi, C., Benedetto, R., Gargiulo, R., Giovannini, C., & Masella, R. (2007). Polyphenols, dietary sources and bioavailability. Annali Dell’Istituto Superiore Di Sanita, 45(4), 348–361.
Dogan, H., Uskutoglu, T., Bas, H., Stankov, S., Fidan, H., Cosge, S. B., Stoyanova, A., Petkova, N., Yilmaz, G., & Dincheva, I. (2021). Phytochemical composition of wild lemon balm (Melissa officinalis L.) from the flora of Bulgaria. Anatolian Journal of Botany.
Fecka, I., & Turek, S. (2008). Determination of polyphenolic compounds in commercial herbal drugs and spices from Lamiaceae: Thyme, wild thyme and sweet marjoram by chromatographic techniques. Food Chemistry, 108(3), 1039–1053.
Gupta, A., Naraniwal, M., & Kothari, V. (2012). Modern extraction methods for preparation of bioactive plant extracts. International Journal of Applied and Natural Sciences (IJANS, 1(1), 8–26.
Hassan, B. H., & Hobani, A. I. (1998). Flow properties of Roselle (Hibiscus sabdariffa L.) extract. Journal of Food Engineering, 35(4), 459–470.
Hassan, R., Abotaleb, S., Hamed, H., & Eldeen, M. (2019). Antioxidant and antimicrobial activities of Melissa officinalis L. Extracts. Journal of Agricultural Chemistry and Biotechnology, 10(9), 183–187.
İnce, A. E., Şahin, S., & Şümnü, S. G. (2013). Extraction of phenolic compounds from melissa using microwave and ultrasound. Turkish Journal of Agriculture and Forestry.
Jaimez, O., Martínez, H. J., Ramírez-Godínez, J., Castañeda, O. A., Guillermo, G. L., & Contreras-López, E. (2018). Bioactive compounds in aqueous extracts of lemon balm (Melissa officinalis) cultivated in Mexico. Archivos Latinoamericanos de Nutrición, 68(3), 268–279.
Jastrzębska-Stojko, Ż., Stojko, R., Rzepecka-Stojko, A., Kabała-Dzik, A., & Stojko, J. (2013). Biological activity of propolis-honey balm in the treatment of experimentally-evoked burn wounds. Molecules, 18(11), 14397–14413.
Jovanović, A. A., Vajić, U.-J. V., Mijin, D. Z., Zdunić, G. M., Šavikin, K. P., Branković, S., Kitić, D., & Bugarski, B. M. (2022). Polyphenol extraction in microwave reactor using by-product of Thymus serpyllum L. and biological potential of the extract. Journal of Applied Research on Medicinal and Aromatic Plants, 31, 100417–100417.
Jovanović, A., Petrović, P., Đorđević, V., Zdunić, G., Šavikin, K., & Bugarski, B. (2017). Polyphenols extraction from plant sources. Lekovite Sirovine, Br, 37, 45–49.
Jurinjak, T. A., Benković, M., Valinger, D., Jurina, T., Belščak-Cvitanović, A., & Gajdoš, K. J. (2018). Optimizing bioactive compounds extraction from different medicinal plants and prediction through nonlinear and linear models. Industrial Crops and Products, 126, 449–458.
Kammoun, M., Haddar, M., Kallel, T. K., Dammak, M., & Sayari, A. (2013). Biological properties and biodegradation studies of chitosan biofilms plasticized with PEG and glycerol. International Journal of Biological Macromolecules, 62, 433–438.
Kumar, M., Tomar, M., Potkule, J., Verma, R., Punia, S., Mahapatra, A., Belwal, T., Dahuja, A., Joshi, S., Berwal, M. K., Satankar, V., Bhoite, A. G., Amarowicz, R., Kaur, C., & Kennedy, J. F. (2021). Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocolloids, 115, 106595–106595.
Makkar, H. P. S., & Singh, B. (1995). Determination of condensed tannins in complexes with fibre and proteins. Journal of the Science of Food and Agriculture, 69(1), 129–132.
Mărgăoan, R., & Bobiş, O. (2015). Changes in major bioactive compounds with antioxidant activity of Agastache foeniculum, Lavandula angustifolia, Melissa officinalis and Nepeta cataria: Effect of harvest time and plant species. Industrial Crops and Products, 77, 499–507.
Mencherini, T., Picerno, P., Scesa, C., & Aquino, R. (2007). Triterpene, antioxidant, and antimicrobial compounds from Melissa officinalis. Journal of Natural Products, 70(12), 1889–1894.
Miraj, S., Rafieian-Kopaei, K., & S. (2017). Melissa officinalis L.: A review study with an antioxidant prospective. Journal of Evidence-Based Complementary & Alternative Medicine, 22(3), 385–394.
Mladenović, J., Đurić, M., Šekularac, G., Brković, D., Stepanović, J., Mašković, P., & Bošković-Rakočević, L. (2018). Determination of the content of bioactive components in different extracts of Portulaca oleracea L. Acta Agriculturae Serbica, 23(46), 223–231.
Pagano, I., Sánchez-Camargo, A. D. P., Mendiola, J. A., Campone, L., Cifuentes, A., Rastrelli, L., & Ibañez, E. (2018). Selective extraction of high-value phenolic compounds from distillation wastewater of basil (Ocimum basilicumL.) by pressurized liquid extraction. Electrophoresis, 39(15), 1884–1891.
Papoti, V., Totomis, N., Atmatzidou, A., Zinoviadou, K., Androulaki, A., Petridis, D., & Ritzoulis, C. (2019). Phytochemical content of Melissa officinalis L. herbal preparations appropriate for consumption. Processes, 7(2), 88–88.
Pereira, R. P., Boligon, A. A., Appel, A. S., Fachinetto, R., Ceron, C. S., Tanus-Santos, J. E., Athayde, M. L., & Rocha, J. B. T. (2014). Chemical composition, antioxidant and anticholinesterase activity of Melissa officinalis. Industrial Crops and Products, 53, 34–45.
Petersen, M., & Simmonds, M. (2003). Rosmarinic acid. Phytochemistry, 62(2), 121–125.
Petrisor, G., Motelica, L., Craciun, L. N., Oprea, O. C., Ficai, D., & Ficai, A. (2022). Melissa officinalis: Composition, pharmacological effects and derived release systems: A review. International Journal of Molecular Sciences, 23(7), 3591–3591.
Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290–4302.
Radomir, A.-M., Catalina, G. I., Cocuta, B. E., & Letitia, P. M. (2019). Optimization of microwave extraction method of total polyphenols from Melissa officinalis L. vitroplants. Biologie, 28(1), 112–118.
Rajapaksha, S., & Shimizu, N. (2022). Pilot-scale extraction of polyphenols from spent black tea by semi-continuous subcritical solvent extraction. Food Chemistry, X, 13, 100200–100200.
Salamon, I., Kryvtsova, M. V., Trush, K. I., Fandalyuk, A. I., & Spivak, M. J. (2019). Agro-ecological cultivation, secondary metabolite characteristics and microbiological tests of lemon balm (Melissa officinalis): The variety Citronella. Regulatory Mechanisms in Biosystems, 10(2), 264–268.
Savi, P. D. R. S., Dos, S. L., Gonçalves, A. M., Biesek, S., & Lima, C. P. (2017). Análise de flavonoides totais presentes em algumas frutas e hortaliças convencionais e orgânicas mais consumidas na região sul do Brasil. DEMETRA: Alimentação, Nutrição & Saúde, 12(1), 275–287.
Sentkowska, A., Biesaga, M., & Pyrzynska, K. (2015). Polyphenolic composition and antioxidative properties of lemon balm (Melissa officinalis L.) extract affected by different brewing processes. International Journal of Food Properties, 18(9), 2009–2014.
Shafazila, T. S., Lee, P. M., & Lee, K. H. (2010). Radical scavenging activities of extract and solvent-solvent partition fractions from Dendrobium Sonia “Red Bom” flower. U: International Conference on Science and Social Research (CSSR, 762–765.
Shakeri, A., Sahebkar, A., & Javadi, B. (2016). Melissa officinalis L.: A review of its traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology, 188, 204–228.
Šic, Ž. J., Voća, S., Dobričević, N., Pliestić, S., Galić, A., Boričević, A., & Borić, N. (2016). Ultrasound-assisted extraction of bioactive compounds from lemon balm and peppermint leaves. International Agrophysics, 30(1), 95–104.
Silva, B., Cadavez, V., Ferreira-Santos, P., Alves, M., Ferreira, I., Barros, L., Teixeira, J., & Gonzales-Barron, U. (2021). Chemical profile and bioactivities of extracts from edible plants readily available in Portugal. Foods, 10(3), 673–673.
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152-178,.
Sousa, J., Pedroso, N., Borges, L. A. G., Paula, J., & Conceicao, E. (2014). Optimization of Ultrasound-assisted extraction of polyphenols, tannins and epigallocatechin gallate from barks of Stryphnodendron adstringens (Mart.) Coville bark extracts. Pharmacognosy Magazine, 10(38), 318–318.
Stanković, M. S. (2011). Total phenolic content, flavonoid concentration and antioxidant activity of Marrubium peregrinum L. extracts. Kragujevac Journal of Science, 33(1), 63–72.
Stefanović, O., & Čomić, L. (2012). Synergistic antibacterial interaction between Melissa officinalis extracts and antibiotics. Journal of Applied Pharmaceutical Science, 1, 1–5.
Suliman, R., Asmani, F., Suliman, M., Hussain, M., Khan, J., Kaleemullah, M., Othman, N. B., Tofigh, A., & Yusuf, E. (2015). A new approach for predicting antioxidant property of herbal extracts. International Journal of Pharmacognosy and Phytochemical Research, 7(1), 166–174.
Swiader, K., Wijaya, C. H., & Startek, K. (2019). The therapeutic properties of lemon balm (Melissa officinalis L.): Reviewing novel findings and medical indications. Journal of Applied Botany and Food Quality, 92, 327–335.
Szabo, E., Thelen, A., & Petersen, M. (1999). Fungal elicitor preparations and methyl jasmonate enhance rosmarinic acid accumulation in suspension cultures of Coleus blumei. Plant Cell Reports, 18(6), 485–489.
Thomas, R., Tripathi, R., Kamat, S. D., & Kamat, D. V. (2012). Comparative study of phenolics and antioxidant activity of phytochemicals of T. chebula extracted using microwave and ultrasonication. International Journal of Pharmaceutical Sciences and Research, 3(1), 194–197.
Xiang, S., Zou, H., Liu, Y., & Ruan, R. (2020). Effects of microwave heating on the protein structure, digestion properties and Maillard products of gluten. Journal of Food Science and Technology, 57(6), 2139–2149.
Zhou, K., & Yu, L. (2004). Effects of extraction solvent on wheat bran antioxidant activity estimation. LWT - Food Science and Technology, 37(7), 717–721.

Citation

Funding Statement

Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Institut za proučavanje lekovitog bilja 'Dr Josif Pančić', Beograd) (MPNTR - 451-03-68/2020-14/200003) Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Inovacioni centar Tehnološko-metalurškog fakulteta u Beogradu doo) (MPNTR - 451-03-68/2020-14/200287) Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Beogradu, Tehnološko-metalurški fakultet) (MPNTR - 451-03-68/2020-14/200135)

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.