×
Home Current Archive Editorial board
News Contact
Research Article

GC/MS chemical analysis of lavandin (Lavandula x intermedia) hydrolat: successive extraction fractions

By
Dejan Pljevljakušić ,
Dejan Pljevljakušić
Contact Dejan Pljevljakušić

Institute for Medicinal Plants Research "Dr. Josif Pančić" , Belgrade , Serbia

Zorica Drinić
Zorica Drinić

Institute for Medicinal Plants Research "Dr. Josif Pančić" , Belgrade , Serbia

Abstract

Hydrolats are valuable co-products of the essential oil distillation process, whose volatile compounds can be quantified by various methods. In this paper, we have tried to estimate the liquid-liquid extraction cycle number threshold for volatile compounds quantification of lavandin (Lavandula x intermedia) hydrolat. For this purpose, ten consecutive hydrolat extractions with \textit{n}-hexane were analyzed GC/MS with hexadecane (C16) as an internal standard and compared with the lavandin essential oil. The chemical composition of the lavandinhydrolat showed similarity with its essential oil to the great extent, while volatile compounds dissolved in hydrolat exclusively belonged to the class of oxygenated monoterpenes. The total amount of extracted compounds has been estimated to 2174.2 mg/L, where the most dominant compounds in lavandinhydrolat were cis- and trans-furanoidlinalool oxide (676.3 and 634.1 mg/L, respectively), followed by much smaller amounts of linalool, camphor, and 1,8-cineole (167.6, 157.0, and 148.2 mg/L, respectively). Cumulative recoveries of total compounds yield after the third, fifth, and eighth extractions were 88 %, 96 %, and 99 %, respectively. Combined fraction analysis confirmed that in the first 5 cycles more than 95 % of the total yield (from 10 cycles) of extracted volatile compounds can be collected. Based on the results of this study, for volatile compounds quantification in lavandinhydrolat, 5 cycles of \textit{n}-hexane liquid-liquid extraction can be recommended.


 

References

A preliminary analysis of some lavender and lavandin cultivars. (1984). Perfumer and Flavorist, 9, 49–52.
Adams, R. P. (2007). Identification of essential oil components by Gas Chromatography/Mass Spectorscopy.
Arabaci, O., Bayram, E., Baydar, H., Savran, A. F., Karadogan, T., & Ozay, N. (2007). Chemical composition, yield and contents of essential oil of Lavandula hybrida Reverchon grown under different nitrogen fertilizer, plant density and location. Asian Journal of Chemistry, 19, 2184–2192.
Bajalan, I., Rouzbahani, R., Pirbalouti, A. G., & Maggi, F. (2017). Chemical Composition and Antibacterial Activity of IranianLavandula × hybrida. 14(7), e1700064. https://doi.org/10.1002/cbdv.201700064
Baydar, H., & Kineci, S. (2009). Scent Composition of Essential Oil, Concrete, Absolute and Hydrosol from Lavandin (LavandulaxintermediaEmeric ex Loisel.). 12(2), 131–136. https://doi.org/10.1080/0972060x.2009.10643702
Blažeković, B., Yang, W., Wang, Y., Li, C., Kindl, M., Pepeljnjak, S., & Vladimir-Knežević, S. (2018). Chemical composition, antimicrobial and antioxidant activities of essential oils of Lavandula × intermedia ‘Budrovka’ and L. angustifolia cultivated in Croatia. 123, 173–182. https://doi.org/10.1016/j.indcrop.2018.06.041
Carrasco, A., Martinez-Gutierrez, R., Tomas, V., & Tudela, J. (2016). Lavandin (Lavandula × intermedia Emeric ex Loiseleur) essential oil from Spain: determination of aromatic profile by gas chromatography–mass spectrometry, antioxidant and lipoxygenase inhibitory bioactivities. 30(10), 1123–1130. https://doi.org/10.1080/14786419.2015.1043632
Catty, S. (2001). Hydrosols: The next aromatherapy.
Chen, H., Davidson, P. M., & Zhong, Q. (2014). Impacts of Sample Preparation Methods on Solubility and Antilisterial Characteristics of Essential Oil Components in Milk. 80(3), 907–916. https://doi.org/10.1128/aem.03010-13
Garzoli, S., Turchetti, G., Giacomello, P., Tiezzi, A., Laghezza Masci, V., & Ovidi, E. (n.d.). Liquid and Vapour Phase of Lavandin (Lavandula × intermedia) Essential Oil: Chemical Composition and Antimicrobial Activity. 24(15), 2701. https://doi.org/10.3390/molecules24152701
Jeon, D. H., Moon, J. Y., Hyun, H. B., & Cho, S. K. (2013). Composition analysis and antioxidant activities of the essential oil and the hydrosol extracted from Rosmarinus officinalis L. And Lavandula Angustifolia Mill. Produced in Jeju. Journal of Applied Biological Chemistry, 56, 141–146.
Jug., P. (1984). Pharmacopoea Jugoslavica.
Kaloustian, J., Mikail, C., Abou, L., Vergnes, M.-F., Nicolay, A., & Portugal, H. (2008). Nouvelles perspectives industrielles pour les hydrolats. 155(3), 367–373. https://doi.org/10.1080/12538078.2008.10516117
Kara, N., & Baydar, H. (2013). Determination of lavender and lavandin cultivars (Lavandula sp.) containing high quality essential oil in Isparta, Turkey. Turkish Journal of Field Crops, 18, 58–65.
Kunicka-Styczyńska, A., Śmigielski, K., Prusinowska, R., Rajkowska, K., Kuśmider, B., & Sikora, M. (2015). Preservative activity of lavender hydrosols in moisturizing body gels. 60(1), 27–32. https://doi.org/10.1111/lam.12346
Labadie, C., Ginies, C., Guinebretiere, M.-H., Renard, C. M. G. C., Cerutti, C., & Carlin, F. (2015). Hydrosols of orange blossom ( Citrus aurantium ), and rose flower ( Rosa damascena and Rosa centifolia ) support the growth of a heterogeneous spoilage microbiota. 76, 576–586. https://doi.org/10.1016/j.foodres.2015.07.014
Lavender: the genus Lavandula, Medicinal and aromatic plants–industrial profiles. (2002).
Lesage-Meessen, L., Bou, M., Sigoillot, J.-C., Faulds, C. B., & Lomascolo, A. (2015). Essential oils and distilled straws of lavender and lavandin: a review of current use and potential application in white biotechnology. 99(8), 3375–3385. https://doi.org/10.1007/s00253-015-6511-7
Martínez-Gil, A. M., Pardo-García, A. I., Zalacain, A., Alonso, G. L., & Salinas, M. R. (2013). Lavandin hydrolat applications to Petit Verdot vineyards and their impact on their wine aroma compounds. Food Research International, 53, 391–402.
Pistelli, L., Najar, B., Giovanelli, S., Lorenzini, L., Tavarini, S., & Angelini, L. G. (2017). Agronomic and phytochemical evaluation of lavandin and lavender cultivars cultivated in the Tyrrhenian area of Tuscany (Italy). 109, 37–44. https://doi.org/10.1016/j.indcrop.2017.07.041
Politi, M., Menghini, L., Conti, B., Bedini, S., Farina, P., Cioni, P. L., Braca, A., & De Leo, M. (n.d.). Reconsidering Hydrosols as Main Products of Aromatic Plants Manufactory: The Lavandin (Lavandula × intermedia) Case Study in Tuscany. 25(9), 2225. https://doi.org/10.3390/molecules25092225
Prusinowska, R., Śmigielski, K., Stobiecka, A., & Kunicka-Styczyńska, A. (2016). Hydrolates from lavender (Lavandula angustifolia) – their chemical composition as well as aromatic, antimicrobial and antioxidant properties. 30(4), 386–393. https://doi.org/10.1080/14786419.2015.1016939
Rajeswara Rao, B. R. (2013). Hydrosols and water-soluble essential oils: their medicinal and biological properties. In Recent Progress in Medicinal Plants: Essential Oils I (pp. 119–140).
Renaud, E. N. C., Charles, D. J., & Simon, J. E. (2001). Essential Oil Quantity and Composition from 10 Cultivars of Organically Grown Lavender and Lavandin. 13(4), 269–273. https://doi.org/10.1080/10412905.2001.9699691
Rose, J. (1999). 375 essential oils and hydrosols.
Simon, J., & Tannous, P. (n.d.). Water balance in hydrosol production via steam distillation: case study using lavandin (texttiLavandula x intermedia.
Śmigielski, K. B., Prusinowska, R., Krosowiak, K., & Sikora, M. (2013). Comparison of qualitative and quantitative chemical composition of hydrolate and essential oils of lavender (Lavandula angustifolia). 25(4), 291–299. https://doi.org/10.1080/10412905.2013.775080
Tannous, P., Julini, R., Wang, M., & Simon, M. (2004). Water balance in hydrosol production viasteam distillation: case study using lavandin.
Understanding hydrolats: The specific hydrosols for aromatherapy: A guide for health professionals. (2004).
Yalkowsky, S. H., He, Y., & Jain, P. (n.d.). Handbook of Aqueous Solubility Data. https://doi.org/10.1201/ebk1439802458
Yohalem, D., & Passey, T. (2011). Amendment of soils with fresh and post-extraction lavender (Lavandula angustifolia) and lavandin (Lavandula×intermedia) reduce inoculum of Verticillium dahliae and inhibit wilt in strawberry. 49, 187–196. https://doi.org/10.1016/j.apsoil.2011.05.006

Citation

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.