×
Home Current Archive Editorial board
News Contact
Originalan naučni rad– Original scientific paper

IN VITRO ANTITUMORAL ACTIVITY OF THE EXTRACT OF SPONGE ACANTHELLA ACUTA

By
Tatjana Stanojković ,
Tatjana Stanojković

Institute for Oncology and Radiology , Belgrade , Serbia

Sanja Milović ,
Sanja Milović

Faculty of Pharmacy, University of Belgrade , Belgrade , Serbia

Ivana Matić ,
Ivana Matić

Institute for Oncology and Radiology , Belgrade , Serbia

Nađa Grozdanić ,
Nađa Grozdanić

Institute for Oncology and Radiology , Belgrade , Serbia

Zoran Kljajić
Zoran Kljajić

Institute of Marine Biology Kotor , Kotor , Montenegro

Abstract

Seaweeds are an excellent source of compounds with biological activity.Particularly interesting are the sponges, which suited in medicine reaches into the distant past. The biological effects of extracts and new compounds from sponges have been reported in numbers of scientific papers. Sponges produce a plethora of chemical compounds with widely varying carbon skeletons, which have been found to interfere with pathogenesis at many different points. Due to this, sponges have the potential to provide future drugs against important diseases, such as cancer. All of this makes them particularly interesting to examine the antitumor activity. In this paper for the first time presented a data of investigations of antitumor activity of extract of sponge Acanthella acuta, in vitro. Crude samples of Acanthella acuta (phylum Porifera) were collected from the natural locality in Adriatic Sea, the Bay of Kotor, and subjected to extraction. After that, we examined the cytotoxicity and cell cycle distribution of dichloromethane/methanol (1:1) extract of Acanthella acuta, on two human malignant cell lines, human cervix carcinoma (HeLa)and human colon carcinoma (LS174): and also a normal fetal lung fibroblast cell line (MRC5). The IC50 values in the MTT assay in LS174 and HeLa cells were ranged from 9.92±0.54 to 29.51±μg/ml. Moreover, cytotoxic activity of Acanthella acuta extract on normal MRC5 cells was not observed. Cell cycle distribution was quantified by flow cytometry. In vitro antitumor activites was accompained by an important subG1 accumulation of HeLa cells after treatment of tested cell lines with extract.


 

References

Abraham, I., Sayed, K. E., Chen, Z. C., & Guo, H. (2012a). Current status on marine products with reversal effect on cancer multidrug resistance. Mar Drugs, 10(10), 2312–2321.
Abraham, I., Sayed, K. E., Chen, Z. S., & Guo, H. (2012b). Current status on marine products with reversal effect on cancer multidrug resistance. Mar Drugs, 10(10), 2312-21 99.
Angerhofer, C. K., Pezzuto, J. M., Konig, G. M., Wright, A. D., & Stichter, O. (1992). Antimalarial activity of sesquiterpenes from the marine sponge Acanthella klethra. J. Nat. Prod, 55, 1787–1789.
Aoki, S., Cao, L., Matsui, K., Rachmat, R., Akiyama, S. I., & Kobayashi, M. (2004a). Kendarimide A, a novel peptide reversing P-glycoprotein-mediated multidrug resistance in tumor cells, from a marine sponge of Haliclona sp. Chem Inform, 60(33), 7053–7059.
Aoki, S., Cao, L. W., Matsui, K., Rachmat, R., Akiyama, S., & Kobayashi, M. (2004b). Kendarimide A, a novel peptide reversing P-glycoprotein-mediated multidrug resistance in tumor cells, from a marine sponge of Haliclona sp. Tetrahedron, 60, 7053–7059.
Aoki, S., Chen, Z. S., Higasiyama, K., Setiawan, A., Akiyama, S., & Kobayashi, M. (2001). Reversing effect of agosterol A, a spongean sterol acetate, on multidrug resistance in human carcinoma cells. Jpn J Cancer Res, 92(8), 886–895.
Ashour, M. A., Elkhayat, E. S., Rainer, E., & RAEdrada. (2007). Indole alkaloid from the Red Sea sponge Hyrtios erectus. ARIKVOC, 15, 225–231.
Beedessee, G., Ramanjooloo, A., Tiscornia, I., Cresteil, T., Raghothama, S., Arya, D., Rao, S., Gowd, K. H., Bollati-Fogolin, M., & Marie, D. E. (2014). Evaluation of hexane and ethyl acetate extracts of the sponge Jaspis diastra collected from Mauritius Waters on HeLa cells. J Pharm Pharmacol, 66(9), 1317–1327.
Bergquist, R. P. (1978). Sponges.
Blunt, J. W., Copp, B. R., Keyzers, R. A., & M.H.G.Munro, M. R. P. (2013). Marine natural products. Nat. Prod. Rep, 30, 237–323.
Blunt, J. W., Copp, B. R., Keyzers, R. A., & M.H.G.Munro, M. R. P. (2014). Marine natural products. Nat. Prod, Rep.,31, 160–258.
Brown, J. W., Cappell, S., Perez-Stable, C., & Fishman, L. M. (2004). Extracts from two marine sponges lower cyclin B1 levels, cause a G2/M cell cycle block and trigger apoptosis in SW-13 human adrenal carcinoma cells. Toxicon, 1(43), 841–846.
Chairman, K., Singh, A. J. A. R., & Alagumuthu, G. (2012). Cytotoxic and antioxidant activity of selected marine sponges. Asian Pacific Journal of Tropical Disease, 2(3), 234–238.
Chakraborty, C., Hsu, C. H., Wen, Z. H., & Lin, C. S. (2019). Anticancer drugs discovery and development from marine organism. Curr Top Med Chem, 9(16), 1536–1545.
Chen, Z. S., S.Aoki, M. K., Ueda, K., Sumizawa, T., Furukawa, T., Okumura, H., Ren, X. Q., Belinsky, M. G., Lee, K., Kruh, G. D., Kobayashi, M., & Akiyama, S. I. (2001). Reversal of drug resistance mediated by multidrug resistance protein (MRP) 1 by dual effects of agosterol a on MRP1 function. International Journal of Cancer, 93(1), 107–113.
Clothier, R. H. (1995). Methods Mol. Biol, 43, 109–118.
Ferreira, E. G., Wilke, D. V., & Jimenez, P. C. (2007). Cytotoxic activity of hydroethanolic extracts of sponges (Porifera) collected at Pedra da Risca do Meio Marine State Park. In Ceará State, Brazil, Porifera ResearBiodiversity, Innovation and Sustainability (pp. 313–318).
Gottesman, M. M., Fojo, T., & Bates, S. E. (2002). Multidrug resistance in cancer: role of ATP dependent transporters. Nat Rev Cancer, 2(1), 48–58.
Laport, M., Santos, O., & Muricy, G. (2009). Marine sponges: Potential sources of new antimicrobial drugs. Curr. Pharma. Biotechnol, 10, 86–105.
Lopez, D., & Luis, S. M. (2014). Marine natural products with P-Glycoprotein inhibitor properties. Mar Drugs, 12(1), 525–546.
Lopez, D., & Martinez-Luis, S. (2014). Marine natural products with Pglycoprotein inhibitor properties. Mar Drugs, 22(12), 525–546.
Márquez, F. M. D., Acosta, L. M. E., Márquez, F. M. E., Martínez, M. A., Márquez, F. E. J., & Camargo, G. M. (2012). Effect of extracts from the calcareous sponge Leucetta aff. floridana on the cell cycle of leukemoid cell lines. Rev Cubana Farm, 46(4), 436–445.
Mayer, A. M. S., & Glaser, K. B. (2013). Marine Pharmacology and the Marine Pharmaceuticals Pipeline. The FASEB Journal, 27, 1167 7.
Miyaoka, H., Nishijima, S., Mitome, H., & Yamada, Y. J. (2000). Three new scalarane sesterterpenoids from the Okinawan sponge Hyrtios erectus. Nat. Prod, 63, 1369.
Mosmann, T. (1983). J. Immunol. Methods, 65, 55–63.
Narasimharaju, A., Thameemulansari, L. H., & Maheswara, C. U. (2012). Cytotoxic activity of methanol and dichloromethane extracts from marine 100 sponges. International Journal of Pharmacy and Pharmaceutical Sciences, 4(3), 277–279.
Ohno, M., & Abe, T. (1991). J. Immunol. Methods, 145, 199–203.
Quesada, A. R., Grávalos, M. D. G., & Puentes, J. L. F. (1996). Polyaromatic alkaloids from marine invertebrates as cytotoxic compounds and inhibitors of multidrug resistance caused by P-glycoprotein. Br J Cancer, 74(5), 677–682.
Ramachandran, M., Titus, I., Backyavathy, P. M., & Nambikkairaj, B. (2013). In vitro determination of marine sponge Hyrtios erectus secondary metabolite effect against human breast and larynx cancer cell lines. International Journal of Current Research, 5(2), 124–128.
Shi, Z., Jain, S., Peng, Iwk. X. X., Abraham, I., Youssef, D. T. A., Fu, L. W., Sayed, K. E., Ambudkar, S. V., & Chen, Z. S. (2007). Sipholenol A, a marine-derived sipholane triterpene, potently reverses P-glycoprotein (ABCB1)-mediated multidrug resistance in cancer cells. Cancer Science, 98(9), 1373–1380.

Citation

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.