×
Home Current Archive Editorial board
News Contact
Research Article

Water soluble biomolecules from Nepeta nuda regulate microbial growth: A case study of apple juice preservation

By
Uroš Gašić ,
Uroš Gašić
Contact Uroš Gašić

Department of Plant Physiology, Institute for Biological Research “Siniša Stankovic”, University of Belgrade , Belgrade , Serbia

Dejan Stojković ,
Dejan Stojković

Department of Plant Physiology, Institute for Biological Research “Siniša Stankovic”, University of Belgrade , Belgrade , Serbia

Marija Ivanov ,
Marija Ivanov

Department of Plant Physiology, Institute for Biological Research “Siniša Stankovic”, University of Belgrade , Belgrade , Serbia

MIlica Miletić ,
MIlica Miletić

Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade , Belgrade , Serbia

Danijela Mišić ,
Danijela Mišić

Department of Plant Physiology, Institute for Biological Research “Siniša Stankovic”, University of Belgrade , Belgrade , Serbia

Milan Veljić ,
Milan Veljić

Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade , Belgrade , Serbia

Marina Soković
Marina Soković

Department of Plant Physiology, Institute for Biological Research “Siniša Stankovic”, University of Belgrade , Belgrade , Serbia

Abstract

The following study was designed to explore antimicrobial properties of the by-product obtained in a hydro-distillation process of essential oil from Nepeta nuda L. We strived to develop a novel drink with antimicrobial self-preserving properties based on two components, N. nuda decoct and apple juice. By using 96-well plate microdilution assay it was shown that the N. nuda decoct has antimicrobial potential towards 8 bacterial and 6 fungal species, with the range of minimal inhibitory concentrations 10-300 mg/mL. By using actual food system, such as apple juice, in combination with and without short thermal treatment, we have shown that the decoct of N. nuda can inhibit the growth of food contaminant fungus Penicillium aurantiogriseum. It was determined that 3 volumes of decoct (500 mg/mL) and 22 volumes of apple juice should be mixed in order to obtain self-preserving drink resistant to P. aurantiogriseum contamination. Likewise, when thermal treatment (80 °C for 10 s) is included, self-preserving mixture of decoct and apple juice should be made in volume ratios 3:47, respectively. The designed product maintained the pleasant taste as determined by panelists during the sensorial evaluation. Chemical investigations (UHPLC–Orbitrap MS analysis) of N. nuda decoct showed that the most abundant compound was 1,5,9-epideoxyloganic acid (0.410 mg/g of dried decoct). Since N. nuda is traditionally used as a tea, we presented the novel formulation of the drink with antimicrobial properties based on the its decoct and apple juice.


 

References

Aneja, K. R., Dhiman, R., Aggarwal, N. K., & Aneja, A. (2014). Emerging Preservation Techniques for Controlling Spoilage and Pathogenic Microorganisms in Fruit Juices. 2014, 1–14. https://doi.org/10.1155/2014/758942
Aničić, N., Gašić, U., Lu, F., Ćirić, A., Ivanov, M., Jevtić, B., Dimitrijević, M., Anđelković, B., Skorić, M., Nestorović Živković, J., Mao, Y., Liu, J., Tang, C., Soković, M., Ye, Y., & Mišić, D. (n.d.). Antimicrobial and Immunomodulating Activities of Two Endemic Nepeta Species and Their Major Iridoids Isolated from Natural Sources. 14(5), 414. https://doi.org/10.3390/ph14050414
Aras, A., Bursal, E., & Dogru, M. (n.d.). UHPLC-ESI-MS/MS analyses for quantification of phenolic compounds of Nepeta nuda subsp. Lydiae. 009–013. https://doi.org/10.7324/japs.2016.601102
Asgarpanah, J., Sarabian, S., & Ziarati, P. (2014). Essential oil ofNepetagenus (Lamiaceae) from Iran: a review. 26(1), 1–12. https://doi.org/10.1080/10412905.2013.851040
Batiha, G. E.-S., Beshbishy, A. M., Ikram, M., Mulla, Z. S., El-Hack, M. E. A., Taha, A. E., Algammal, A. M., & Elewa, Y. H. A. (n.d.). The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. 9(3), 374. https://doi.org/10.3390/foods9030374
Daouk, R. K., Dagher, S. M., & Sattout, E. J. (1995). Antifungal Activity of the Essential Oil of Origanum syriacum L. 58(10), 1147–1149. https://doi.org/10.4315/0362-028x-58.10.1147
Dienaitė, L., Pukalskienė, M., Matias, A. A., Pereira, C. V., Pukalskas, A., & Venskutonis, P. R. (2018). Valorization of six Nepeta species by assessing the antioxidant potential, phytochemical composition and bioactivity of their extracts in cell cultures. 45, 512–522. https://doi.org/10.1016/j.jff.2018.04.004
Espinel-Ingroff, A. (2001). Comparison of the E-test with the NCCLS M38-P Method for Antifungal Susceptibility Testing of Common and Emerging Pathogenic Filamentous Fungi. 39(4), 1360–1367. https://doi.org/10.1128/jcm.39.4.1360-1367.2001
Fiolet, T., Srour, B., Sellem, L., Kesse-Guyot, E., Allès, B., Méjean, C., Deschasaux, M., Fassier, P., Latino-Martel, P., Beslay, M., Hercberg, S., Lavalette, C., Monteiro, C. A., Julia, C., & Touvier, M. (n.d.). Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort. k322. https://doi.org/10.1136/bmj.k322
Gašić, U. M., Natić, M. M., Mišić, D. M., Lušić, D. V., Milojković-Opsenica, D. M., Tešić, Ž. Lj., & Lušić, D. (2015). Chemical markers for the authentication of unifloral Salvia officinalis L. honey. 44, 128–138. https://doi.org/10.1016/j.jfca.2015.08.008
Gayán, E., Serrano, M. J., Monfort, S., Álvarez, I., & Condón, S. (2013). Pasteurization of Apple Juice Contaminated with Escherichia coli by a Combined UV–Mild Temperature Treatment. 6(11), 3006–3016. https://doi.org/10.1007/s11947-012-0937-z
Gormez, A., Bozari, S., Yanmis, D., Gulluce, M., Agar, G., & Sahin, F. (2013). Antibacterial activity and chemical composition of essential oil obtained fromNepeta nudaagainst phytopathogenic bacteria. 25(2), 149–153. https://doi.org/10.1080/10412905.2012.751060
Heinz, V., Toepfl, S., & Knorr, D. (2003). Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment. 4(2), 167–175. https://doi.org/10.1016/s1466-8564(03)00017-1
Keyser, M., Műller, I. A., Cilliers, F. P., Nel, W., & Gouws, P. A. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. 9(3), 348–354. https://doi.org/10.1016/j.ifset.2007.09.002
Kozuharova, E., Benbassat, N., & Getov, I. (2014). Ethnobotanical records of not yet documented therapeutic effects of some popular Bulgarian medicinal plants. 26(7), 647. https://doi.org/10.9755/ejfa.v26i7.18200
Li, Z., Guo, X., Cao, Z., Liu, X., Liao, X., Huang, C., Xu, W., Liu, L., & Yang, P. (2018). New MS network analysis pattern for the rapid identification of constituents from traditional Chinese medicine prescription Lishukang capsules in vitro and in vivo based on UHPLC/Q-TOF-MS. 189, 606–621. https://doi.org/10.1016/j.talanta.2018.07.020
Magnani, C., Isaac, V. L. B., Correa, M. A., & Salgado, H. R. N. (n.d.). Caffeic acid: a review of its potential use in medications and cosmetics. 6(10), 3203–3210. https://doi.org/10.1039/c3ay41807c
Mišić, D., Šiler, B., Gašić, U., Avramov, S., Živković, S., Nestorović Živković, J., Milutinović, M., & Tešić, Ž. (2015). Simultaneous UHPLC/DAD/(+/−)HESI-MS/MS Analysis of Phenolic Acids and Nepetalactones in Methanol Extracts of Nepeta  Species: A Possible Application in Chemotaxonomic Studies. 26(1), 72–85. https://doi.org/10.1002/pca.2538
Nadeem, M., Imran, M., Aslam Gondal, T., Imran, A., Shahbaz, M., Muhammad Amir, R., Wasim Sajid, M., Batool Qaisrani, T., Atif, M., Hussain, G., Salehi, B., Adrian Ostrander, E., Martorell, M., Sharifi-Rad, J., C. Cho, W., & Martins, N. (n.d.). Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review. 9(15), 3139. https://doi.org/10.3390/app9153139
Nargis Jamila. (n.d.). Secondary metabolites from Nepeta juncea. 10(77). https://doi.org/10.5897/ajb11.1447
Pacifico, S., Galasso, S., Piccolella, S., Kretschmer, N., Pan, S.-P., Marciano, S., Bauer, R., & Monaco, P. (2015). Seasonal variation in phenolic composition and antioxidant and anti-inflammatory activities of Calamintha nepeta (L.) Savi. 69, 121–132. https://doi.org/10.1016/j.foodres.2014.12.019
Reis, F. S., Stojković, D., Soković, M., Glamočlija, J., Ćirić, A., Barros, L., & Ferreira, I. C. F. R. (2012). Chemical characterization of Agaricus bohusii, antioxidant potential and antifungal preserving properties when incorporated in cream cheese. 48(2), 620–626. https://doi.org/10.1016/j.foodres.2012.06.013
Salehi, B., Valussi, M., Jugran, A. K., Martorell, M., Ramírez-Alarcón, K., Stojanović-Radić, Z. Z., Antolak, H., Kręgiel, D., Mileski, K. S., Sharifi-Rad, M., Setzer, W. N., Cádiz-Gurrea, M. de la L., Segura-Carretero, A., Şener, B., & Sharifi-Rad, J. (2018). Nepeta species: From farm to food applications and phytotherapy. 80, 104–122. https://doi.org/10.1016/j.tifs.2018.07.030
Sarikurkcu, C., Eskici, M., Karanfil, A., & Tepe, B. (2019). Phenolic profile, enzyme inhibitory and antioxidant activities of two endemic Nepeta species: Nepeta nuda subsp. glandulifera and N. cadmea. 120, 298–301. https://doi.org/10.1016/j.sajb.2018.09.008
Sharma, A., Cooper, R., Bhardwaj, G., & Cannoo, D. S. (2021). The genus Nepeta: Traditional uses, phytochemicals and pharmacological properties. 268, 113679. https://doi.org/10.1016/j.jep.2020.113679
Smiljković, M., Dias, M. I., Stojković, D., Barros, L., Bukvički, D., Ferreira, I. C. F. R., & Soković, M. (n.d.). Characterization of phenolic compounds in tincture of edibleNepeta nuda: development of antimicrobial mouthwash. 9(10), 5417–5425. https://doi.org/10.1039/c8fo01466c
Snook, M. E., Blum, M. S., Whitman, D. W., Arrendale, R. F., Costello, C. E., & Harwood, J. S. (1993). Caffeoyltartronic acid from catnip (Nepeta cataria): a precursor for catechol inlubber grasshopper (Romalea guttata) defensive secretions. Journal of Chemical Ecology, 19(9), 1957-. https://doi.org/10.1007/BF00983799
Süntar, I., Nabavi, S. M., Barreca, D., Fischer, N., & Efferth, T. (2018). Pharmacological and chemical features ofNepetaL. genus: Its importance as a therapeutic agent. 32(2), 185–198. https://doi.org/10.1002/ptr.5946
Takeda, Y., Morimoto, Y., Matsumoto, T., Honda, G., Tabata, M., Fujita, T., Otsuka, H., Sezik, E., & Yesilada, E. (1995). Nepetanudoside, an Iridoid Glucoside with an Unusual Stereostructure from Nepeta nuda ssp. albiflora. 58(8), 1217–1221. https://doi.org/10.1021/np50122a009
Takeda, Y., Yagi, T., Matsumoto, T., Honda, G., Tabata, M., Fujita, T., Shingu, T., Otsuka, H., Sezik, E., & Yesilada, E. (1996). Nepetanudosides and iridoid glucosides having novel stereochemistry from Nepeta nuda ssp. albiflora. 42(4), 1085–1088. https://doi.org/10.1016/0031-9422(96)00074-x
Tsukatani, T., Suenaga, H., Shiga, M., Noguchi, K., Ishiyama, M., Ezoe, T., & Matsumoto, K. (2012). Comparison of the WST-8 colorimetric method and the CLSI broth microdilution method for susceptibility testing against drug-resistant bacteria. 90(3), 160–166. https://doi.org/10.1016/j.mimet.2012.05.001
Vasić, V., Gašić, U., Stanković, D., Lušić, D., Vukić-Lušić, D., Milojković-Opsenica, D., Tešić, Ž., & Trifković, J. (2019). Towards better quality criteria of European honeydew honey: Phenolic profile and antioxidant capacity. 274, 629–641. https://doi.org/10.1016/j.foodchem.2018.09.045
Wareing, P., & Davenport, R. R. (n.d.). Microbiology of Soft Drinks and Fruit Juices (pp. 279–299). https://doi.org/10.1002/9780470995822.ch11

Citation

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.