×
Home Current Archive Editorial board
News Contact
Research Article

In vitro and in silico prediction of antineurodegenerative properties of Helichrysum plicatum flower extract

By
Miloš Jovanović ,
Miloš Jovanović

Institute for medicinal plants research „Dr. Josif Pančić“, Belgrade, Serbia

Zorica Drinić ,
Zorica Drinić
Contact Zorica Drinić

Institute for medicinal plants research „Dr. Josif Pančić“, Belgrade, Serbia

Dubravka Bigović ,
Dubravka Bigović

Institute for medicinal plants research „Dr. Josif Pančić“, Belgrade, Serbia

Ana Alimpić-Aradski ,
Ana Alimpić-Aradski

Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Belgrade, Serbia

Sonja Duletić-Laušević ,
Sonja Duletić-Laušević

Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, Belgrade, Serbia

Katarina Šavikin
Katarina Šavikin

Institute for medicinal plants research „Dr. Josif Pančić“, Belgrade, Serbia

Abstract

This study aimed to assess the antineurodegenerative and antioxidant activity of Helichrysum plicatum flower extract, as well as to identify extract ingredients with acceptable pharmacokinetic parameters such as gastrointestinal absorption, blood-brain barrier permeation, and P-glycoprotein-mediated effusion for optimal therapeutic brain exposure. Antioxidant activity was evaluated by ABTS, FRAP, and β-carotene bleaching assays, while antineurodegenerative activity was tested using acetylcholinesterase (AChE) and tyrosinase (TYR) inhibitory activity assays. In the ABTS test, the dry extract at the highest applied concentration (500 μg/mL) showed better or similar antioxidant activity compared to the standards. In the β-carotene assay, all applied concentrations of the extract showed significantly higher activity than vitamin C. No concentration-dependent activity was observed in the AChE assay, while in the TYR assay the lowest extract concentration (100 μg/mL) showed the highest percentage of inhibition (27.92%). Pharmacokinetic parameters of compounds were predicted by in silico SwissADME online tool in accordance by the rules of drug-likeness. According to the pharmacokinetic properties, we concluded that pentoxymethoxylated flavones may represent CNS drug candidates for further studies.


 

References

Acet, T., Ozcan, K., & Zengin, G. (2019). An assessment of phenolic profiles, fatty acid compositions, and biological activities of two Helichrysum species: H. Plicatum and H. Chionophilum. J. Food. Biochem, 44(2). https://doi.org/10.1111/jfbc.13128.
Apaydin, Y. B., Kordali, S., Terim, K. K. A., Yildirim, F., Aktas, S. E., & Altun, S. (2017). Effect of Helichrysum plicatum DC. subsp. plicatum ethanol extract on gentamicin-induced nephrotoxicity in rats. J. Zhejiang. Univ. Sci. B, 18(6), 501–511.
Aslan, M., Deliorman, O. D., Orhan, N., Sezik, E., & Yesilada, E. (2007). In vivo antidiabetic and antioxidant potential of Helichrysum plicatum ssp. plicatum capitulums in streptozotocin-induced-diabetic rats. J. Ethnopharmacol, 109(1), 54–59.
Aydin, T. (2020). Secondary metabolites of Helichrysum plicatum DC. subsp. plicatum flowers as strong carbonic anhydrase, cholinesterase and α-glycosidase inhibitors. Z. Naturforsch. C. J. Biosci, 75(5–6), 153–159.
Benzie, I. F., & Strain, J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem, 239(1), 70–76.
Bigovic, D., Brankovic, S., Kitic, D., Radenkovic, M., Jankovic, T., Savikin, K., & Zivanovic, S. (2010). Relaxant effect of the ethanol extract of Helichrysum plicatum (Asteraceae) on isolated rat ileum contractions. Molecules, 15(5), 3391–3401.
Bigović, D., Šavikin, K., Janković, T., Menković, N., Zdunić, G., Stanojković, T., & Djurić, Z. (2011). Antiradical and cytotoxic activity of different Helichrysum plicatum flower extracts. Nat. Prod. Commun, 6(6), 819–822.
Bigović, D., Stević, T., Janković, T., Noveski, N., Radanović, D., Pljevljakušić, D., & Djurić, Z. (2017). Antimicrobial activity of Helichrysum plicatum DC. Hem. Ind, 71(4), 337–342.
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep, 7, 42717.
Daina, A., & Zoete, V. (2016). A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. Chem. Med, em.11(11), 1117–1121.
Dapkevicius, A., Venskutonis, R., Beek, T. A., & Linssen, J. P. H. (1998). Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania. J.Sci.Food Agric, 77(1), 140–146.
Ellman, G. L., Courtney, K., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol, 7(2), 88–95.
Masuda, T., Yamashita, D., Takeda, Y., & Yonemori, S. (2005). Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci. Biotechnol. Biochem, 69(1), 197–201.
Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci, 84(4), 407–412.
Moon, J. K., & Shibamoto, T. (2009). Antioxidant assays for plant and food components. J. Agric. Food Chem, 57(5), 1655–1666.
Morphy, R., & Rankovic, Z. (2015). Multitarget drugs: strategies and challenges for medicinal chemists. In The practice of medicinal chemistry (pp. 449–470).
Pandey, T., Smita, S. S., Mishra, A., Sammi, S. R., & Pandey, R. (2020). Swertiamarin, a secoiridoid glycoside modulates nAChR and AChE activity. Exp. Gerontol, 138, 111010.
Rankovic, Z. (2015). CNS drug design: balancing physicochemical properties for optimal brain exposure. J. Med. Chem, 58(6), 2584–2608.
Ritter, J. M., Flower, R., Henderson, G., Loke, Y. K., MacEWAN, D., & Rang, H. P. (2020). Rang and Dale’s Pharmacology. Rang and Dale’s Pharmacology. 9th ed. Edinburgh, Elsevier.
Sezik, M., Aslan, M., Orhan, D. D., Erdemoglu, E., Pekcan, M., Mungan, T., & Sezik, E. (2010). Improved metabolic control and hepatic oxidative biomarkers with the periconception use of Helichrysum plicatum ssp. Plicatum. J. Obste.t Gynaecol, 30(2), 127–131.
Tepe, B., Sokmen, M., Akpulat, H. A., & Sokmen, A. (2005). In vitro antioxidant activities of the methanol extracts of four Helichrysum species from Turkey. Food Chem, 90, 685–689.
Vila, M. (2019). Neuromelanin, aging, and neuronal vulnerability in Parkinson’s disease. Mov. Disord, 34(10), 1440–1451.
Vujić, B., Vidaković, V., Jadranin, M., Novaković, I., Trifunović, S., Tešević, V., & Mandić, B. (2020). Composition, antioxidant potential, and antimicrobial activity of Helichrysum plicatum DC. various extracts. Plants, 9(3), 337.
Y., B., Halici, Z., Keles, M. S., Colak, S., Cakir, A., Kaya, Y., & Akçay, F. (2011). Helichrysum plicatum DC. subsp. plicatum extract as a preventive agent in experimentally induced urolithiasis model. J Ethnopharmacol, 138(2), 408–414.

Citation

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.